Local renin-angiotensin system regulates hypoxia-induced vascular endothelial growth factor synthesis in mesenchymal stem cells.

نویسندگان

  • Yue Fan
  • Lulu Wang
  • Chao Liu
  • Hongyi Zhu
  • Lu Zhou
  • Yu Wang
  • Xiaowei Wu
  • Qingping Li
چکیده

The use of mesenchymal stem cell (MSC) transplantation for ischemic heart disease has been reported for several years. The main mechanisms responsible for the efficacy of this technique include the differentiation of MSCs into cardiomyocytes and endothelial cells, as well as paracrine effects. However, the differentiation rates of MSCs are very low, and the differentiated cells are not mature. In addition, MSCs undergo massive cell death within a few days after transplantation to the ischemic myocardium. Paracrine effects may thus play a major role in MSCs transplantation. Angiotensin II (Ang II) is known to be produced locally in the ischemic myocardium, but the effects of hypoxia on the local renin-angiotensin system (RAS) in MSCs, and the role of the RAS in hypoxia-induced vascular endothelial growth factor (VEGF) secretion remain unknown. In this study, we demonstrated that hypoxia stimulated the local RAS in MSCs, while pretreatment with the Ang II type 1 (AT1) receptor antagonist losartan reduced hypoxia-induced hypoxia-inducible factor 1α (HIF-1α) and VEGF production. The ERK1/2 inhibitor U0126 and the Akt inhibitor LY294002 also inhibited hypoxia-induced HIF-1α and VEGF production. Overall, these results indicate that the local RAS in MSCs regulates hypoxia-induced VEGF production through ERK1/2, Akt and HIF-1α pathways via the AT1 receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the AT1R/HIF-1α/ACE Axis Mediates Angiotensin II-Induced VEGF Synthesis in Mesenchymal Stem Cells

A local renin-angiotensin system (RAS) is expressed in mesenchymal stem cells (MSCs) and regulates stem cell function. The local RAS influences the survival and tissue repairing ability of transplanted stem cells. We have previously reported that angiotensin II (Ang II) pretreatment can significantly increase vascular endothelial growth factor (VEGF) synthesis in MSCs through the ERK1/2 and Akt...

متن کامل

Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A

Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

Complexity of tumor vasculature and molecular targeting therapies.

Malignant solid tumors require blood supply for their uncontrollable progression. Angiogenic blood vessels generally sprout from preexisting vascular cells. In addition, various types of precursor cells also participate in tumor neovascularization. They include endothelial progenitor cells, hematopoietic stem cells and mesenchymal stem cells that are stimulated and attracted into tumor lesion, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of clinical and experimental pathology

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2015